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On the Error Probability of Coded Frequency-Hopped 
Spread-Spectrum Multiple-Access Systems with 

More Than One Code Symbol per 
Dwell Interval 

MICHAEL GEORGIOPOULOS 

Abstract-This paper is concerned with the multiple-access capability 
of an asynchronous, frequency-hopped spread-spectrum communication 
system employing error-correcting codes. Many current frequency- 
hopped spread-spectrum systems employ error-correcting codes with 
more than one code symbol per dwell interval. In this paper, we present 
a method to compute the codeword error probability induced in such 
spread-spectrum systems. Furthermore, comparisons to spread-spectrum 
systems utilizing one code symbol per dwell interval are conducted, and 
useful conclusions are drawn. 

I. INTRODUCTION 

ANY current frequency-hopped spread-spectrum systems em- M ploy error-correcting codes with more than one code symbol 
per dwell interval. This paper examines the multiple-access capabil- 
ity of these systems. In particular, we present a method to compute 
the induced codeword error probability. Furthermore, some useful 
conclusions are drawn by comparing the codeword error probabili- 
ties induced in spread-spectrum systems utilizing more than one 
versus one (see [l] ,  121, [3]) code symbols per dwell interval. 

11. THE MODEL 

We adopt the model in [4]. The only difference between our 
model and the model in [4] is that our spread-spectrum system 
employs s (s > 1) instead of one (s = 1 )  code symbols per dwell 
interval. The ith ( 1  5 i 5 s) symbol of a dwell interval is called 
symbol i. We assume, as in [4], that a packet consists of only one 
codeword. Hence, we can use the words packet and codeword 
interchangeably. 

We introduce some notation with the aid of Fig. 1 where s = 4 .  
Each user employs a random frequency-hopping pattern with fre- 
quencies chosen uniformly from the set Q = { 1 , 2 , .  . . , q }  and 
independently of the frequencies chosen by the other users. We 
denote the frequency-hopping pattern for user k as {qk; j = 
* * * , - 2, - 1 ,  0, 1 ,  . . . }. Suppose that K users are transmitting 
packets and a receiver locks on to the packet of user 1 .  We assume 
that user 1's packet consists of symbols transmitted using frequen- 
cies Fi ,  F i , .  . . , Fh where N corresponds to the number of dwell 
intervals per packet. It is worth noting that N is equal to [ M / s ]  
where M is the number of code symbols per packet. We assign 
indexes to the K - 1 interfering packets (i.e., user 2 , .  . . , user K ) .  
Index k ( k  E ( 2 , .  . . , K } )  belongs to the index set J i ,  1 I i 5 s, if 
user k changes carrier frequency during the reception of symbol i 
of user 1's packet by the receiver. Obviously, u:=,Ji  = 
{ 2 ; * - ,  K } .  Two dwell intervals of user k ( k ~ { 2 , - . . ,  K } )  over- 
lap with the j th  dwell interval of user 1 (see also Fig. 1). We define 
the frequency utilized by the dwell interval on the left as qk. We 
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Fig. 1. Usersl ,k ,EJ, ,  k z E J z , k 3 E J 3 ,  k,EJ4atthereceiversite. 

also define the collection o-f frequencies qk, k,E Ji ,  as 6, i ,  and the 
collection of frequencies 4, i ,  1 I i 5 s, as 5. 

111. A METHOD TO COMPUTE THE PACKET ERROR PROBABILITY 

Suppose that K users are transmitting packets and a receiver 
locks on to the packet of user 1. Let us also assume that the 
cardinality of the set Ji ( 1  I i I s) is equal to K i .  We define by 
P,( K , ,  . . . , K , )  the probability that user 1's packet (i.e., the de- 
sired transmission) is decoded incorrectly by the receiver. Let us 
denote by SF, 1 5 n 5 N; 11 n, the number of code symbols of 
user 1's packet, from dwell interval I to dwell interval n, that are in 
error. Then, 

M 

P, (K , ; . . ,K , )  = Pr(S;"= rn) ( 1 )  
m = e + l  

where e is the error correction capability of the code. Let us define 
random vectors T,, their realizations r j ,  and binary valued functions 
g i (  x ,  yi) as follows: 

where x takes values from the set Q (Q = { 1,2; * e ,  q } )  and y i  is 
a collection of K i  variables, each one-of which assumes values 
from the set Q. For example, g,(ql, 5, ,) is a random variable 
whose value indicates whether the j th  dwell interval of user 1's 
packet is hit from the left by some user with index in the set J , ,  or 
not hit from the left by any user with index in the index set J ,  (see 
also Fig. 1). 

Let us use the symbols @ and Q I  to denote the sum of two and the 
sum of an arbitrary number of binary (0, 1) variables, respectively. 
We define the sum of an arbitrary number of binary variables to be 
equal to one if at least one of the variables is equal to one, and zero 
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otherwise. We finally denote by.H/, 1 5 i I s; 1 I I I N, binary 
random variables such that Hi is equal to one if the ith symbol in 
the Ith dwell interval of user 1's packet is hit, and zero otherwise. 

Our objective is to describe a method which enables us to 
compute the probabilities Pr[S;" = m] in (1) .  We first present a 
useful Lemma. 

Lemma I :  For every n 2 2, for all m such that 0 5 m 5 s(n 
- l),  and all t ,  E QZK, the conditional probability Pr[S," = m_l TI 
= t l ]  depends on t ,  through the values of the functions gi( f i ,  f 2 ,  ;), 
1 5 i s s .  

Proof: We assume that t ,  is such that g (  f i ,  f., ;) = ui(ui = 
0, l ) ,  1 5 i 5 s. We can write 

Pr[ SJ = m I T,  = t l ]  
n s  

E ~ H / = m I T , = t , ]  
i =  1 1 = 3  i = l  

1 n s  

+E C H , ! = ~  
1 = 3  i =  1 

with initial conditions 

4 2 ,  m ;  u I ; . . ,  U,) 

1 where 

(4) 

Now because of the assumption that each of the frequencies utilized 
in a dwell interval were chosen uniformly over Q = { 1,2 ,  e ,  4) 
and independently of the other frequencies, it can be shown that the 
probability in (2) is independent of fi. Thus, Pr[S," = m I TI = t l ]  
depends on t ,  only through the values of the functions g i  (1 5 i 5 s) 
at the points ( f i ,  f2, ;), respectively. One of the ways of showing 
that the probability in (2)  is independent of f i  is induction (i.e., we 
prove that this statement is true for n = 2 and m = 0, 1 ,2 ,  we 
assume that it is true for n - 1 and all possible m choices and then 
we prove that it is true for n and all possible m choices). The 

0 
Lemma 1 states an almost obvious fact (see also Fig. I ) .  Given t ,  

the number of erroneous code symbols of user 1's packet, from 
dwell interval two and beyond, depend on whether each one of the 
groups of users with indexes in the index sets J i ,  1 < i 5 s, hits or  
not the second dwell interval of user 1's  packet from the left. Due to 
Lemma 1 we can write 

Pr[ S: = m I T~ = r l ]  = s( n , m ;  u I  , . . . , U,) 

details are ommitted due to lack of space. 

The next theorem shows that the conditional probabilities 
s( n ,  m; u1 , . . , U,) satisfy certain recursive expressions. 

Theorem I :  The conditional probabilities s( n ,  m; u 1  , . . . , U,) ( n  
> 3 , 0 5 m 5 s ( n -  l ) , u l ; ~ - , u , = O , l  satisfy thefollowingre- 
cursive expressions: 

s ( n ,  m ;  u l , * * * ,  U,) 

; I , .  .. ,;,=o, 1 

(6) 
and 6 denotes the delta function. 0 

The proof of Theorem 1 is in the Appendix. The final step in our 
effort to compute Pr[ S;" = m] is to express this probability in terms 
of the conditional probabilities s (n ,  m; u l ;  * a ,  us),  which can be 
evaluated recursively with the help of formula (3). It can be shown 
that 

Pr[ s;" = m ]  

- - 
J , ,  k l ;  . . , Js ,  ks=O,  1 

The proof of formula (7) is ommitted due to lack of space. It is 
similar, though, with the proof of formula (3) in the Appendix. 
Equations (3)-(7) give us a recursive algorithm, capable of comput- 
ing Pr[S;" = m] for all possible m choices. As a result, 
Pe( K ,  , * e ,  K,) can be readily determined from ( I ) .  

IV. NUMERICAL RESULTS 

In an effort to obtain numerical results in a compact form we 
assume that the arrivals of the interfering users (i.e., users 
2 ,3 , .  . . , K ) ,  at the receiver, are uniformly distributed within a 
dwell interval of user 1's packet (i.e., the desired transmission). 
Then, we define the average packet error probability P e ( K )  as 
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follows: 

The average packet error probability is chosen to be the measure of 
performance of our spread-spectrum system. It is an indicator of the 
multiple-access capability of the system. In Table I, we include the 
values of the average packet error probability induced, when the 
(32, 16), (64,32) ,  (128,64) extended Reed-Solomon codes are used 
for the encoding of the packets, while s = 2 or 4 and q = 50 or 
100. 

V. COMMENTS AND CONCLUSIONS 

The employment of Reed-Solomon (RS) error correcting codes is 
justified by the fact that RS codes are most successful in correcting 
bursts of errors. Error bursts are most frequent in frequency-hopped 
spread-spectrum (FH-SS) systems. It is also worth noting, that C. 
D. Frank et al. showed in [5] that RS codes outperform convolu- 
tional codes in a frequency-hopping system utilizing one code 
symbol per dwell interval. Furthermore, numerical results quantify- 
ing the performance of any block code can be obtained readily, 
since the analysis, presented in Section III, is valid for any member 
of the class of block codes. 

The assumption that a symbol hit results in a symbol error was 
made for analytical simplicity. If we were to abolish this assump- 
tion, we would have to compute the symbol error probability and 
take into consideration the interdependence of symbol errors, both 
of which are difficult tasks, beyond the scope of this work. Note that 
in this paper we considered only the interdependence of symbol hits. 
The computational complexity involved in the evaluation of the 
symbol error probability for a frequency-hopped system utilizing 
BFSK modulation is addressed in 161. Finally, it is worth mention- 
ing that this assumption leads us to upper bounds on the induced 
packet error probabilities. 

Most researchers in the field ([l], 121, [3]) have concentrated on 
evaluating codeword error probabilities for frequency-hopped 
spread-spectrum systems employing one code symbol per dwell 
interval. We present these results in Table 11. A comparison of the 
results in Tables I and II reveals that RS codes are most efficient for 
s = 1 and small K values or for s > 1 and large K values. It can 
be shown that this behavior is exhibited by any member of the class 
of block codes. Since for most packet error probabilities of interest 
(i.e., packet error probabilities smaller than lo-')  the entries in 
Table II are smaller than the entries in Table I, we conclude that 
FH-SS systems with one code symbol per dwell interval are more 
efficient in combatting multiple-access interference than FH-SS sys- 
tems with s (s > 1) code symbols per dwell interval, it is worth 
examining whether interleaving the RS codes to degree s improves 
the performance of the system. 

In this paper, we have computed the average packet (codeword) 
error probability induced in a frequency-hopped spread-spectrum 
system, when more than one code symbols are contained per dwell 
interval, and when the (32, 16), (64,32), or (128; $4) extended RS 
codes are used for the encoding of the packets. Fdi&rmore, some 
comparisons to already existing results for FH-SS, systems employ- 
ing one code symbol per dwell interval were conducted, and useful 
conclusions were drawn. 

APPENDIX 
Suppose that t ,  is such that g ( f i ,  f,, ,) = u,(l 5 i 5 s). We can 

write 

TABLE I 
EXACT AVERAGE PACKET ERROR PROBABILITIES, WHEN S = 2 

RS-(32,16),e = 8,q  = 50 RS-(32,16),e = 8 , g  = 100 

K Pe(K)  
2 0.67800528D-04 
3 0.16612402D-02 
4 0.95090789D-02 
5 0.29878090D-01 
6 0.67480848D-01 
7 0.12367458 
8 0.19636776 
9 0.28102519 
10 0.37202369 

RS-(64,32),e = 16,q = 50 

K Pe(K)  
2 0.11299282D-06 
3 0.37129789D-04 
4 0.84250091D-03 
5 0.62876883D-02 
6 0.25375313D-01 
7 0.69370159D-01 
8 0.14520923 
9 0.25083862 
10 0.37579355 

RS-(128,64),e = 32,q = 50 

f $2(2(1i9740D-07 
4 0.77915022D-05 
5 0.32173083D-03 
6 0.40271175D-02 
7 0.23641965D-01 
8 0.82620223D-01 
9 0.19908432 
10 0.36528535 

K Pe(K) 
2 0.23636125D-05 
3 0.66687872D-04 
4 0.44409735D-03 
5 0.16338776D-02 
6 0.43371069D-02 
7 0.93578479D-02 
8 0.17491890D-01 
9 0.29428593D-01 
10 0.45679092D-01 

RS-(64,32),e = 16,q = 100 

K P , ( K )  
3 0.10977481D-06 
4 0.34243895D-05 
5 0.36051325D-04 
6 0.20811685D-03 
7 0.81902921D-03 
8 0.24700688D-02 
9 0.61248515D-02 
10 0.13071485D-01 

RS-(128,64),e = 32,q = 100 

f ?2(EJD-O9 
5 0.20676501D-07 
6 0.56638783D-06 
7 0.73888647D-05 
8 0.57546142D-04 
9 0.30655557D-03 
10 0.12203689D-02 

EXACT AVERAGE PACKET ERROR PROBABILITIES, WHEN S = 4 

RS-(3?,1G),e=8,q=50 RS-(32,16),e=8,q=100 

K 
2 
3 
4 
5 
6 
7 
8 
9 
10 

P&K) 
0.10496657D-02 
0.74717941D-02 
0.2235891 1D-01 
0.46893321D-01 
0.80895224D-01 
0.12329582 
0.17251818 
0.22676593 
0.28422930 

K 
2 
3 
4 
5 
6 
7 
8 
9 
10 

p4h-1 
0.13575714D-03 
0.10270228D-02 
0.32733630D-02 
0.73221203D-02 
0.13485945D-01 
0.21960463D-01 
0.32841477D-01 
0.46141279D-01 
0.61803807D-01 

h' 
2 
3 
4 
5 
6 
7 
8 
9 
10 

P e ( K )  
0.32312756D-04 
0.71678084D-03 
0.42443713D-02 
0.14386943D-01 
0.35205132D-01 
0.69609355D-01 
0.11852001 
0.18076892 
0.25354448 

K 
2 
3 
4 
5 
6 
7 
8 
9 
10 

pe(10 
0.11452382D-05 
0.27201660D-04 
0.17360627D-03 
0.65224675D-03 
0.18024761D-02 
0.40707709D-02 
0,797002281)-02 
0.14029715D-01 
0.22746334D-01 
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0 .2)  Pr[S; = rn - dl T2 = t,] = Pr[S,”-’ = rn - dl TI = t , ]  
(due to the fact that T is a stationary Markov chain). 

0 .3 )  Pr[S,”-’ = rn - d l  T I  = t,] = s(n - 1,  rn - 
d; j ,  , . . . , j , )  for t, E C ( j ,  , . . . , j , )  [due to Lemma 11. 

0 . 4 )  Pr[S,”-’ = rn - d l  T I  = f ,]  = s ( n  - 1 ,  rn - 
d; k ,  , * . , k,) for t ,  E D (  j ,  , k, ,  . . . , j , ,  k,) [due to Lemma 11. 

0.5) Pr[T, E C(j,;.., j,)I TI = t , ]  = q-’II := ,a i ( j i )  [the 
proof is ornrnitted due to lack of space]. 

0 . 6 )  Pr[T, E D ( j , ,  k , ; . . ,  j , ,  k,)I T I  = t , ]  = (1  - 
q-’)IIs= , c i ( j i ,  k i )  [the proof is ommitted due to lack of space]. 

If we utilize 0.1)-0.6) in (A.l) we can show the validity of 
expression (3) in theorem 1. Similarly we can show the validity of 

TABLE I1 
PACKET ERROR PROBABILITIES, WHEN s = 1 

RS-(32,16),e = 8,g = 50 

K Pe(K)  
2 0.29258205D-05 
3 0.552442M)D-03 
4 0.79367870D-02 
5 0.40181555D-01 
6 0.11609753 
7 0.23771936 
8 0.38780563 
9 0.54129833 
10 0.67758863 

RS-(64,32),e = 16,q = 50 

X P e ( K )  
2 0.3347D-09 
3 0.53409047D-05 
4 0.653586641)-03 
5 0.11112115D-01 
6 0.65402557D-01 
7 0.20134859 
8 0.40677557 
9 0.62152310 
10 0.79127206 

RS-(32,16),e = 8, g = 100 

K Pe(K)  
2 0.90666D-08 
3 0.28128207D-05 
4 0.65672672D-04 
5 0.53292023D-03 
6 0.24280649D-02 
7 0.76916175D-02 
8 0.18989771D-01 
9 0.39122298D-01 
10 0.70294109D-01 

RS-(64,32),e = 16,q = 100 

K Pe(K) 
3 0.3111D-09 
4 0.1070926D-06 
5 0.50014987D-05 
6 0.78417104D-04 
7 0.61816346D-03 

.8  0.30402676D-02 
9 0.10615931D-01 
10 0.28616755D-01 

0 
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